
Mining Health Models for Performance Monitoring of Services

Mithun Acharya1 and Vamshidhar Kommineni2
1Department of Computer Science, North Carolina State University, Raleigh, NC, USA, 27695

2Microsoft Center for Software Excellence, One Microsoft Way, Redmond, WA, USA, 98052
acharya@csc.ncsu.edu, vamshik@microsoft.com

Abstract—Online services such as search and live applications
rely on large infrastructures in data centers, consisting of both
stateless servers (e.g., web servers) and stateful servers (e.g.,
database servers). Acceptable performance of such
infrastructures, and hence the availability of online services,
rely on a very large number of parameters such as per-process
resources and configurable system/application parameters.
These parameters are available for collection as performance
counters distributed across various machines, but services
have had a hard time determining which performance
counters to monitor and what thresholds to use for
performance alarms in a production environment. In this
paper, we present a novel framework called PerfAnalyzer, a
storage-efficient and pro-active performance monitoring
framework for correlating service health with performance
counters. PerfAnalyzer automatically infers and builds health
models for any service by running the standard suite of pre-
deployment tests for the service and data mining the resulting
performance counter data-set. A filtered set of performance
counters and thresholds of alarms are produced by our
framework. The health model inferred by our framework can
then be used to detect performance degradation and collect
detailed data for root-cause analysis in a production
environment. We have applied PerfAnalyzer on five simple
stress scenarios – CPU, memory, I/O, disk, and network, and
two real system – Microsoft’s SQL Server 2005 and IIS 7.0
Web Server, with promising results.

I. INTRODUCTION

 The Web has forever changed the traditional ways in
which software is built and delivered to customers. With
online models, business can be realized as a suite of
services offered to the customers over the Internet. Services
such as search, mail, storage, auction, and online stores are
flourishing multi-billion dollar online business ventures
today. Business can be conducted anywhere, anytime with
millions and billions of transactions happening every day.
Reliable infrastructure support is a must for such online
ventures to survive. Online services such as search and live
applications rely on large infrastructures in data-centers,
consisting of both stateless servers (e.g., web servers) and
stateful servers (e.g., database servers). Server downtimes
cost companies billions of dollars in losses every year. Any
downtime more than 0.1% is deemed unacceptable.

 Performance testing [W01] can evaluate how online
applications (in this paper, we use the term application and
service to mean the same thing) respond to different inputs

and stress levels. However, performance testing can only be
used to verify with some confidence that an application is
able to perform under expected and peak load conditions.
Performance testing establishes safe stress limits for
applications and provides guidelines for various
configurable parameters on which the application
performance might depend on. These guidelines [W01] are
usually set by experts, who are either developers of the
system or have thorough experience in observing and
understanding various complicated system behaviors. The
premise of this paper is to address whether we can design
an expert system, which aids system administrators not
familiar with the system in outlining performance
guidelines.

 Data center and server farms span hundreds of
thousands of machines, often geographically distributed.
Even when such huge systems are thoroughly tested for
performance prior to deployment, real life scenarios can
cause unexpected failures, undiagnosable performance
problems, and slowdowns. In the face of such events, it is
often very difficult to pin point the root cause with
performance testing guidelines. Along with the
performance testing guidelines, we need a pro-active, real-
time performance monitoring framework to predict server
downtimes in production environments. Such a framework
should help pin pointing the root cause of failures or
undiagnosable performance problems. The real-time
monitoring framework should incur minimal storage and
processor overhead, almost running transparently with the
monitored application. It is also important for such a
system to have a very low false positive and false negative
rate.

 With company profits tightly tied to the acceptable and
continual performance of huge server infrastructures that
host online applications, it would be beneficial to design a
generic real-time monitoring framework, independent of
applications. Such a real-time framework also facilitates
dynamic capacity planning and performance tuning.
Dynamic capacity planning guides smart and dynamic
distribution of resources such as memory, bandwidth, and
processing power across the infrastructure for desired
performance. Dynamic performance tuning aids real-time
adjustments of resource and application parameters for
optimum performance. Server failures are not always

because of resource starvation. Performance problems can
also surface due to bad application design that does not
correctly utilize the available resources at the disposal. By
observing the right parameters, the monitoring framework
can provide guidelines for application redesign to alleviate
performance problems caused by improper resource
utilization.

Processor % Total processor time, % Total privileged

time, % Total interrupt time

System Context switches per second, Processor queue
length

Memory Available Mbytes, Pages per sec, Cache faults
per sec

Process Page faults per sec, and for each monitored
process – working set, private bytes, and handle
count

Network
Interface

Bytes received/sec, Bytes sent/sec, Packets
received discarded, Packets outbound discarded

.NET CLR
Memory

Aspnet_wp counters for %Time in GC, #Bytes
in all heaps, # of pinned objects, Large object
heap size

.NET CLR
Exceptions

Aspnet_wp counter for # Exceptions thrown
per sec

.NET CLR Locks
and Threads

aspnet_wp counters for Contention rate per
second, Current queue length

.NET CLR Data SqlClient: Current # connection pools,
SqlClient: Current # pooled connections

Figure 1: System and .NET counters for Web Server

 With company profits tightly tied to the acceptable and
continual performance of huge server infrastructures that
host online applications, it would be beneficial to design a
generic real-time monitoring framework, independent of
applications. Such a real-time framework also facilitates
dynamic capacity planning and performance tuning.
Dynamic capacity planning guides smart and dynamic
distribution of resources such as memory, bandwidth, and
processing power across the infrastructure for desired
performance. Dynamic performance tuning aids real-time
adjustments of resource and application parameters for
optimum performance. Server failures are not always
because of resource starvation. Performance problems can
also surface due to bad application design that does not
correctly utilize the available resources at the disposal. By
observing the right parameters, the monitoring framework
can provide guidelines for application redesign to alleviate
performance problems caused by improper resource
utilization.

A. Performance Counters

 Acceptable performance of server infrastructures, and
hence the availability of online services, rely on a very
large number of parameters such as per-process resource
utilization and configurable system/application parameters.
These parameters are available as performance counters
distributed across various machines. Performance counters
can monitor system components such as processors,
memory, network, disk, and I/O and publish performance-
related data. Apart from system and OS counters, an
application can publish a specific set of counters for
monitoring. User applications can also add custom
performance counters or create counters dynamically
during run-time, to observe select system/application
behaviors. Figure 1 shows the expert-specified [W01], web
server-specific counters, which might help identify
potential web server bottlenecks during run-time. Due to
space constraints, only a subset of counters is displayed
here. Based on their experience and battery of pre-
deployment performance tests, experts specify thresholds
(not shown in the figure) for each counter, which determine
healthy web server operation.

 In this paper, we present PerfAnalyzer, a storage-
efficient and pro-active performance monitoring framework
based on performance counters. Even application experts
have had a hard time determining which performance
counters to monitor and what thresholds to use for
performance alarms in a production environment. The
general problem of designing an expert system to predict
performance problems, with no user input whatsoever, is
hard, and we make a few assumptions to simplify the
problem while still being realistic. Prior to the deployment
of an application in production environments, a stress tester
tests the application in-house with different loads (ideally,
as varied as possible, being representative of loads seen at
application production environments), while recording
different (ideally, all) performance counters. We assume
that the stress tester can roughly distinguish between good
and bad application health (for example, a high response
time in a web service could be bad). The stress tester,
however, cannot tell which performance counters are the
predictors of application health and how. To this end, our
framework analyzes the collected performance counter data
and builds health models with relevant counters (ideally, a
very small set of counters). These counters and the
corresponding health model can be used to predict health of
the application when deployed in production environments.
The small set of counters can aid the system builders in root
cause analysis, performance tuning, and capacity planning.
Our framework complements the performance testing phase
during which observations on performance counter data are
done. The observations are used to construct a health
model to pro-actively monitor the application at production
environments, transparently. PerfAnalyzer is independent

of the application it analyzes and bases its inference solely
on the observed performance counter data-set. On a very
high level, PerfAnalyzer collects vast amounts of
performance counter data during the performance testing
phase. PerfAnalyzer applies techniques from statistics and
data mining on this data set to construct a health model for
the application. The health model is then deployed with the
application, for real-time performance monitoring. The
health model is used to predict performance degradation
and collect detailed data for root cause analysis in
production environments.

B. Contributions

 Our framework applies rigorous data mining algorithms
on performance counter data-set, for building real-time
health model for services. In summary, this paper makes
the following main contributions:

Experimental methodology to collect performance
counter data: We outline various steps required to perform
stress tests during the pre-deployment performance testing
phase to collect useful performance counter data. The
performance counter data-set is then used by our
framework to mine health models. We propose three data-
categorization techniques required to prepare the data set
for further analysis.

Mining health models using performance counters: We
apply techniques from statistics and data mining on
performance counter data-set collected during the
performance testing phase to automatically build storage-
efficient and pro-active health models for services.
PerfAnalyzer is designed to be independent of the
application it analyzes.

Implementation: We have implemented our framework in
a tool called PerfAnalyzer, which can be used to build
health models for any service by analyzing performance
counter data-set. Extensive experiments were conducted to
determine what combinations of algorithms and thresholds
yield the best health model.

Evaluation: We used PerfAnalyzer to automatically build
health models for five simple stress scenarios – CPU,
Memory, Network, Disk, and I/O, and two real scenarios -
SQL Server 2005, and IIS 7.0 Web Server, with promising
results.

 The remainder of this paper is structured as follows.
Section II starts with a synthetic and simplistic example
that motivates our framework. Section III describes our
framework in detail and introduces the various components
of PerfAnalyzer, along with the experiment methodology.
Section IV presents the implementation details and

evaluation results. Section V discusses related work.
Finally, we conclude in Section VI and discuss future work.

II. EXAMPLE

Figure 2: Crash data and crash model

In this section, we present a simple, yet illustrative

example to demonstrate how PerfAnalyzer derives the
health model from the observed performance counter data-
set. Assume a user plays a game of chess against his
desktop computer and finds that the chess application
crashes unpredictably. To investigate the crash problem, the
user decides to observe the four well-known performance
counters available on his computer. The user observes
%CPU utilization (C), %network utilization (N), %RAM
utilization (R), and page faults per second (P) at five
different times – at times when the chess application is
running fine and at times when the chess application
crashes. On a Windows machine, these counters are
available through Microsoft Windows Task Manager, often
invoked through the ctrl-alt-del key sequence. For each
instance, the user also records the crash status (crash), i.e.,
if the chess application crashed (yes) or not (no). The four
attributes, C, N, R, and P are called feature attributes and
the crash status, crash, is called the class attribute. The
collected data is shown in Figure 2.

The goal of PerfAnalyzer is to derive the “crash model”

for the chess application from the collected crash data. The
crash model can be used to infer (or predict) the crash
status at any arbitrary time when the values for the feature
attributes are known. In other words, the problem is to infer
(or predict) the unknown class attribute crash (yes or no)
for arbitrary values of the feature attributes (C, N, R, and
P). The inference is based on the previously collected crash
data. The four feature attributes are representative of
different performance counters available on any system.
The crash model is analogous to application health model.
PerfAnalyzer derives the crash model from the synthetic
data-set in two phases. In the first phase, it identifies the

irrelevant and redundant attributes. This step is called
feature selection. Irrelevant attributes do not have any
correlation with the class attribute. An attribute is
redundant, if another attribute can accurately predict the
class attribute as well as or better than the redundant
attribute. In our example, PerfAnalyzer determines that the
network utilization (N) is an irrelevant attribute (no
correlation with the crash status; probably the chess
application does not use the network at all). Furthermore,
PerfAnalyzer determines that attribute P (page faults per
second) is redundant. %RAM utilization (R) can be used in
lieu of page faults per second (P) to predict the crash status
(in our synthetic example, it turns out that P is exactly 10
times R; page faults per second is expected to increase with
RAM utilization). PerfAnalyzer employs various feature
selection algorithms to identify redundant and irrelevant
feature attributes. Once irrelevant and redundant attributes
are pruned, PerfAnalyzer constructs the crash model by
identifying thresholds for the remaining attributes. This
constitutes the second phase, in which various regression
algorithms [A02] are used. For the synthetic crash data
shown in Figure 2, PerfAnalyzer derives the following
crash model:

crash = ((C>85) | (R>90) | ((C>50) ^ (R>75)))? yes : no

Challenges: The example motivates the idea of mining
health models from performance counter data-set.
However, there are many issues, not obvious in the
motivating example, and these issues shall be addressed
throughout the paper. (1) There were only four parameters
in the synthetic data-set and we could derive the crash
model manually by inspection. Furthermore, as shown in
Figure 1, for web server, performance can also be affected
by related applications such as SQL Server. Even a system
expert might easily miss out on such interactions. Manually
identifying thresholds becomes impossible if desired
system behavior depends on thousands of performance
counters with complex interactions. Furthermore, in our
example, the crash model derived from only five
observations will be very inaccurate. (2) Performance
counters often do not share linear relation with the
application health, and complex regression equations are
required to capture the correlation. (3) In our example, the
crash status was a simple dichotomous variable with only
two values. The health index for real applications can be
much finer with possibly no apparent ordering between
different indices. (4) Since the health model depends
heavily on the performance counter data-set, a systematic
methodology to conduct performance tests at various health
levels should be in place. (5) Finally, it is not at all obvious
which feature selection and regression algorithms (or
combinations) result in the best health model. Also, for
each algorithm used, we conducted extensive experiments
to estimate the correct cut-off values (for a given algorithm,
counters are retained or discarded based on the cut-off value

for that algorithm; see Section III.D). In the next section,
we present our framework and show how these problems
are addressed.

III. FRAMEWORK

In this section, we formalize the several notions

introduced in the previous sections. We formalize the
problem of mining health models from performance
counter data-set. Next, we describe the monitoring
framework needed to capture the counter data-set. After
outlining the experiment methodology required for
collecting the counter data-set, we present the two main
components of our framework – first-pass filters and
second-pass filters.

A. Problem Statement

 Let S = {c1, c2, c3, …, cn} be a set of n (= |S|) user-
determined performance counters (feature attributes), which
can be observed during application run-time. For our
experiments, we choose S to be all the counters available
on the machine running our target application (we
sometimes use the word application to mean target
application). PerfAnalyzer monitors counters from a single
machine on which the target application runs. However, it
is a simple generalization to gather performance counters
from multiple machines. Our framework makes no
assumption on the number of performance counters, |S|, or
which machine they are from. This design makes
PerfAnalyzer generic and independent of the number of
machines and the service to be monitored. At any particular
instance of time t, St, a snapshot of S is the recorded value
for each counter in S at instance t. For example, {c1, c2, c3,
…, cn} = {123, 10989, 531, …, 76} at some time t is a
snapshot of set S. Generally, a snapshot of any counter set
is the recorded value for each counter in that set at some
instance of time. Also, recorded snapshots of a subset of S
(say, S’) from the data-set D is the set of recorded values
for counters in S’. Snapshots of S are recorded every Δ
seconds. We identify two phases during which counter
snapshots can be collected. Counter snapshots can be
collected either during the pre-deployment performance
testing phase, or in real-time, after the application is rolled
out at the production environment.

Figure 3: Graphical view of health indices
 k snapshots are recorded during pre-deployment
performance tests, starting from time t = 0, yielding
snapshots S0, SΔ, S2Δ, …, S(k-1)Δ. For simplicity, we omit Δ
in the subscript and represent the snapshots as a set T = {S0,
S1, S2, …, Sk-1}. T denotes counter snapshots collected

during pre-deployment performance tests. We use R to
denote counter snapshots recorded during application run-
time at production time. Performance counter data is
collected at various application health levels. In this paper,
we assume that the user can at least always distinguish
between the three application health levels - baseline (b),
healthy (h), and unhealthy (u), described next.

 An application is said to run at baseline health level b,
when it is just “ON”. For example, SQL Server is said to
run at baseline health level, when the SQL server is up and
ready, but not processing any requests or queries. The
methodology to conduct baseline experiments is presented
in Section III.C. An application is said to run at some
healthy level hj, if the observed (by the user) application
performance is healthy and acceptable. Finally, when the
performance levels are unacceptable, the application is said
to run at unhealthy level u. Healthy levels may be
partitioned into p finer levels, H = {h1, h2, …, hp}. Note the
distinction between the terms health levels and healthy
levels. b, u, and any index in H are different health levels.
Indices in H, namely, h1, h2, …, hp are different healthy
levels. These finer indices are either ordered or unordered.
That is, if the H indices are ordered, then we may assume
that h1 < h2 < h3 < …< hp. An application with healthy
index ha is healthier than the same application with healthy
index hb iff ha < hb, 1 ≤ a, b ≤ p (lower index, better
health). If H indices are unordered, then given any two
indices ha and hb, 1 ≤ a, b ≤ p, it is not possible to
determine if ha < hb, i.e., the only conclusion that can be
safely derived is that the two healthy indices probably
indicate different healthy levels. In Section III.C, we
propose different techniques for handling ordered and
unordered indices. Furthermore, the algorithms for second-
pass filters (See Section III.E) depend on the type of
healthy indices. We club all H indices and u index under
one health index, !b (not baseline). The different health
levels are shown graphically in Figure 3. Clearly, !b = H|u.
If I is the set of all indices, then I = {b, H, u} = {b, h1, h2,
…, hp, u} = {b, !b}. We use set B to denote the indices b
and !b. For each snapshot, we append a health index as
observed by the user. We term the set D = {(S0, b0, i0), (S1,
b1, i1), …, (Sk-1, bk-1, ik-1)}, ijЄH|u, 0 ≤ j < k, bjЄB (either b
or !b), as the performance counter data-set. For all (Sj, bj,
ij) in D, where bj = b, ij = NULL, i.e., no healthy/unhealthy
indices for baseline data. D is stored as a [k × (|S| + 2)]
matrix, with |S| feature attributes, two indices, and k
counter snapshots. PerfAnalyzer mines the health model by
analyzing D and computing S2. To compute S2, an
intermediate set S1 is computed initially. S1, a subset of S,
is an intermediate set which contains all the counters in S
except those that are found irrelevant or redundant by
PerfAnalyzer. To compute S1, the counters in S (feature
attributes) are correlated against the class attribute B.
PerfAnalyzer employs various feature selection algorithms
to compute S1 from S and D (first pass; see Section III.D).

S2, a subset of S1, is the final set of counters used in
building the health model. The reason for computing S2
from S1 instead of S directly is given in Section III.D. To
compute S2, and the health model, the counters in S1 are
regressed against the class attribute H (second pass; see
Section III.E). To summarize, the problem is to compute
S2, and a health model based on S2, given S (user-
provided) and D (recorded by the monitoring agent). The
application is then deployed with the mined health model.

 Mapping the notations to the example in Section II, S =
{C, N, R, P} and I = {yes, no}. For our example, S1 = S2 =
{C, R}. Many issues already outlined in Section II such as
the need for baseline experiments are not immediately
obvious from our example. Finally, for our simple synthetic
example, |S| > |S1| = |S2|. But, generally, for real
applications, |S| >> |S1| > |S2|, as confirmed by our
evaluation in Section IV. In the next few sections, we
describe the various components of our framework along
with the experiment methodology.

B. Monitoring Agent

 The monitoring agent (in short, agent) records counter
snapshots during the pre-deployment performance-test
phase and at the application production site, post-
deployment. Counter snapshots are recorded every Δ
seconds, when the application is running. The agent
(monitoring component of PerfAnalyzer) and the target
application run on the same machine. Remaining
components of PerfAnalyzer run on a remote machine and
interact with the agent. Henceforth, we term the machine on
which the target application runs as the testbed machine
and the machine on which PerfAnalyzer resides as the
remote machine. The counter set to be monitored (S) on the
testbed machine and Δ can be specified in a configuration
file. For our experiments, we choose S to be all the
counters available on the testbed machine. The agent
initially probes the testbed machine to determine what
counters are published and it includes all the published
counters in the set S. PerfAnalyzer monitors counters from
a single testbed machine. However, it is a simple
generalization to gather performance counters from
multiple testbed machines with the concepts of roles and
aggregation discussed in Section VI. The agent runs along
with the application and sends the counter snapshot
information over the network to the remote machine.
Furthermore, many processes, mostly from the Operating
System, not related to the target application, still run on the
testbed machine, possibly skewing the recorded counter
data. These effects, as we show in Section III.C, are
neutralized by conducting baseline experiments and
computing an intermediate set S1, based on the baseline
data. Other configurable parameters for the agent include
the ramp-up time, r, and the moving average window size,
m. Counter snapshots are not recorded for the first r

seconds during the startup or initialization phase of the
target application. Furthermore, recorded counter snapshots
are averaged every m time periods to account for possible
local spikes. The agent dumps the recorded counter
snapshots into a database server on the remote machine.
PerfAnalyzer employs SQL Server 2005 to store and
process performance counter data-set.

C. Experiment Methodology

 In this section, we outline the various steps required to
collect D, the performance counter data-set. Before
proceeding to the details of the methodology, we present a
high-level overview of our framework, shown in Figure 4.
The agent takes S, specified in the configuration file by the
user, as input. Stress experiments are conducted on the
testbed machine. The agent monitors the target application
on the testbed machine. The counter snapshots are dumped
on a database, hosted remotely. PerfAnalyzer employs SQL
Server 2005 to store and process performance counter data-
set. A first-pass filter takes S and the recorded counter
snapshots of S on the database (T) as input and generates
S1. Finally, the second-pass filters take S1 and recorded
snapshots of S1 from the database to generate S2, and a
health model for the target application. To collect the
performance counter data-set D, we perform experiments in
two stages – baseline and stressed. No stress is applied on
the application in the baseline stage. Varying stress levels
are applied on the application in the stressed stage. We next
describe the procedure required to conduct baseline and
stressed experiments and the need for them.

Baseline experiments: Many processes, mostly from the
Operating System, and the agent run on the testbed
machine along with the application. It is important to take
into account the effect these processes have on the
monitored performance counters. In other words, the final
filtered set should include only those counters that are good
predictors of application health. To neutralize the effect of
unrelated processes, we perform experiments in two stages
– baseline and stressed. We notice that the processes that
are not related to the target application are running during
both stages. Hence the unrelated processes more or less
have the same effect on the counters during baseline and
stressed stages. A first-pass filter makes use of this fact to
get rid of those counters that are not at all related to the
application stress. In the baseline stage, the application is
just up and ready without doing any processing. In the
stressed stage (explained next), varying levels of stress are
applied on the application. Each snapshot of S recorded
during the baseline stage is appended with an index b to
indicate baseline. For all (Sj, bj, ij) in D, where bj = b, we
have ij = NULL, as no stress is applied on the application at
this stage.

Stress experiments: In this stage, the user applies varying
levels of stress to the application, often trying to break the
application at unhealthy stress levels. Each snapshot of S
recorded during the stressed stage is appended with an
index !b to indicate not baseline. Once all the data is
indexed with either b or !b, the data-set is ready for first-
pass filtering. Each snapshot of S recorded during the
stressed stage is also appended with a health index i, iЄH
(healthy levels) or u (unhealthy levels). PerfAnalyzer
assumes that the user can at least always distinguish
between baseline, healthy, and unhealthy levels for the
application. However, when experiments are conducted at
two different healthy levels, ha and hb, PerfAnalyzer only
assumes that ha and hb are different and does not assume
any ordering between them. However, if the ordering is
obvious to the user, she explicitly indicates it to
PerfAnalyzer. To recall the definitions from Section III.A,
if the H indices are ordered, then we may assume that h1 <
h2 < h3 < …< hp. An application with healthy index ha is
healthier than the same application with healthy index hb iff
ha < hb, 1 ≤ a, b ≤ p. If H indices are unordered, then given
any two indices ha and hb, 1 ≤ a, b ≤ p, it is not possible to
determine if ha < hb, i.e., the only conclusion that can be
safely derived is that the two indices probably indicate
different healthy levels. If H indices are ordered, then p
denotes the number of different healthy levels user can
distinguish. If H indices are unordered, then p equals
number of distinct sets of experiments conducted at
different unknown stress levels. Snapshots from a single set
of experiments or unknown stress level are assigned to a
distinct bucket in [1, p]. Ordered and unordered indices
lead to three types of data-categorization – continuous-
ordered, rank-ordered, and tag-ordered, explained next.
Data categorization is a necessary step prior to second-pass
filtering.

Data Categorization: Ordered healthy indices lead to two
types of data categorization – rank-ordered and continuous-
ordered. For rank-ordered healthy indices, the absolute
difference among indices does not matter. In other words,
|ha – hb| is immaterial for any a, b in [1, p]. Only the
ordering matters, and not the absolute difference. The
indices in such cases are known as ranks. As an example,
for a bandwidth intensive application, though the user can
tell that a net bandwidth of 100Mbps is better than 1Mbps,
she cannot comment on how much better. For continuous-
ordered healthy indices, the user precisely knows the
absolute difference between any two indices. In other
words, |ha – hb| matters and is precisely known to the user,
for any a, b in [1, p]. Continuous-ordered healthy indices
are used when an external visible effect, E, is available all
the time during baseline and stressed experiments. The
observed values for E are used as healthy indices. As E is
continuous, we have p=∞. Some examples of external
visible effect include transactions per second (TPS),
latency, and throughput. These values are treated as

continuous variables. In some cases such as data-centers, an
externally visible effect might not be readily available. Also
rank-ordering might not be possible. In such cases, we use
tag-unordered data categorization. If the healthy indices are
unordered, then the indices are nominal and PerfAnalyzer
treats different indices as tags. The regression algorithms
used by the second-pass filters depend on whether the
healthy indices are continuous-ordered, rank-ordered, or
tag-unordered. The collected performance counter data-set
is explicitly marked with the appropriate data-category,
before second-pass filters are applied. We next describe the
first and second-pass filters, which analyze the data
collected by the monitoring agent.

Figure 4: Framework for mining health model from performance counter

data-set

D. First- pass Filters

 The counter data-set collected during baseline and
stressed stages are ready for filtering after data-
categorization. First-pass filters operate on snapshots of S
from D. The effect of processes not related to the target
application is more or less the same during baseline and
stressed stages. The key goal of the first-pass is to discard
all counters that are not at all correlated with the
application health. These uncorrelated counters follow
similar patterns in baseline and stressed stages. To identify
such counters, the first-pass filters analyze the relationship
between individual counters in S with B (b or !b), using
different algorithms listed in Figure 5. Counters in S are
called feature attributes, and B is called the class attribute.
Useless (irrelevant or redundant) counters in S are removed
to produce a cleaner set of counters in S1. For any snapshot
of S in T (counter snapshots recorded during pre-
deployment tests), PerfAnalyzer can automatically
determine (with certain confidence d), if the application
health index is b or !b, using counters in S1. In data mining
terms, this process is called data-cleaning or feature-
selection. The first-pass filter computes a confidence value
dci for each counter ciЄS, iЄ[1, n]. All counters ciЄS, iЄ[1,

n], with dci < f, a fixed estimated cut-off value for the filter,
are discarded. The cut-off value f differs for each filter. We
conducted extensive experiments to estimate the best f
value for each filter used in the first pass. We have
implemented different feature selection algorithms in
PerfAnalyzer (see Figure 5) to determine which algorithms
produce the best result. A discussion about the various first
pass filters employed by PerfAnalyzer is given next.

Algorithm Key Idea – Candidate filters – Cut-off (f)

Machine
Learning
Algorithms

Apply ML algorithms directly on S without
data-cleaning - Decision Tree, Naïve Bayes,
and Dichotomous Logistic Regression

Correlation
Algorithms

Capture linear correlation between counters in
S and B – Point biserial correlation – 0.6

Entropy Capture disorder information for a counter C in
S, independent of B – 0.1

Information Gain How much information can be gained about
class attribute B by observing a counter c in S?
– IGSU – 0.2

Figure 5: First-pass filters

Machine Learning (ML) algorithms: We directly used
three ML algorithms [B07, W01] – Decision Tree (DT),
Naïve Bayes (NB), and Dichotomous Logistic Regression
(DLR), over D, to produce health models directly from S
(without generating intermediate set S1). DT algorithm
failed when some feature attributes appeared perfect and
terminated pre-maturely. It did not help us to use DT in the
first pass. NB assumes that the feature attributes are
independent. The algorithm does not take into account the
dependencies that may exist. Hence it was not suitable for
analyzing performance counter data-set D, in which several
dependencies may exist. Dichotomous Logistic Regression
(DLR) [A02] predicts the class attribute B which can have
only two values – b or !b. The feature attributes may be
continuous, discrete, dichotomous, or a mix of any of these.
Discriminant analysis [D84] can also be used to predict
dichotomous class attribute B. However, discriminant
analysis can only be used with continuous, independent
variables. Since we cannot know the type of thousands of
performance counters (feature attributes), we did not
include discriminant analysis among our filters. DLR also
ranks the relative importance of each feature attribute.
However, when we applied DLR on S directly, the resulting
set of counters and health model were very poor. It helped
us to employ simpler filters (explained next) before using
LR filters. LR filters performed very well when a clean set
of counters were presented to them (S1 instead of S). This
was our primary motivation to employ LR filters for second
pass (See Section III.E). When the class attribute is ordinal
or ranked, we use Ordinal Logistic Regression (OLR).
When the class attribute is nominal, we use Multinomial

Logistic Regression (MLR). OLR and MLR filters are used
in the second pass after data-cleaning by simpler first pass
filters, explained next.

Correlation Algorithms: In statistics, correlation
[CCWA03] or correlation co-efficient indicates the
measure of linearity between two random variables. While
various correlation algorithms exist depending on the type
of feature attributes and class attribute, Point Biserial
Correlation (PBC) is used when the class attribute is
dichotomous. In our case, the class attribute B is
dichotomous and hence we included PBC among our first
pass filters. The equation for computing PBC between a
feature attribute X and the class attribute B is pbc = ((M1 –
M0) / σ) sqrt(n1n0/(n(n-1))), where pbc is the PBC
coefficient, M1 is the mean value of the variable X for all
snapshots with B = b, M0 is the mean value of X for all
snapshots with B = !b, and σ is the standard deviation for
all data points taken collectively. Further, n1 is the number
of data points with B = b, n0 is the number of data points
with B = !b, and n is the total sample size. We conducted
extensive experiments to find the cut-off value fPBC for the
PBC filter. We found that fPBC = 0.6 gave us the best
results. We could conclude that all counters in S with
confidence d > fPBC = 0.6 had a strong linear correlation
with the class attribute B. These counters were definitely
included in S1. However, nothing could be said about the
counters with d < fPBC = 0.6. Absence of linear correlation
does not rule out the possibility of non-linear correlation or
other relationships between the counters and the class
attribute B. Other first pass filters based on entropy and
information gain were required for further data-cleaning.
These filters are explained next.

Entropy Algorithms: Entropy based filter analyzes the
feature attributes in S independent of the class attribute B.
The entropy filter measures the disorder among feature
attributes. For a given feature attribute X, the entropy E =
H(X) is measured as H(X) = - ∑xЄX p(x)logp(x), where
p(x) is the probability that the value of X = x. For a given
feature attribute, let EB and ES be the entropy for baseline
and non-baseline snapshots respectively. From our
experiments, we determined that all the counters with ES <
fEntropy = 0.1 are useless and should be discarded. These
counters do not change much during stressed period. We
also computed δ =|EB – ES| for each counter. If δ for a
counter was very high, we definitely selected the counter to
be in S1. Counters with high δ changed meaningfully
between baseline and stressed stages of the application. The
simple entropy filter was experimentally found to be very
effective in reducing the counter size, and is recommended
to be applied before any other filter.

Information Gain Algorithms: Information Gain (IG)
filter computes how much more information is gained
about the class attribute by knowing a feature attribute. IG

filter is used after using the Entropy filter. Unlike Entropy
filter, IG filter analyzes the feature attributes in relation
with the class attribute. Let X be a feature attribute and Y
be a class attribute. Entropy of Y before observing X is
H(Y). Entropy of Y after observing X is H(Y|X), given by
H(Y|X) = -∑xЄXp(x)∑yЄYp(y|x)logp(y|x). To compute the
Information gain, IG, we use IG = H(Y) – H(Y|X).
Unfortunately, IG is biased in favor of features with more
values, that is attributes with greater numbers of values will
appear to gain more information than those with fewer
values even if they are no more informative. Also, all IGs
should be normalized. Symmetrical uncertainty (SU)
compensates for IG's bias towards attributes with more
values and normalizes its value to the range [0, 1]. To
compute SU, we use SU = 2*IG/((H(Y) + H(X)). From our
experiments, we found that the cut-off, fIGSU = 0.2, gave the
best results for the filter using Information Gain with
Symmetrical Uncertainty (IGSU) [H98].

E. Second-pass Filters

 Second-pass filters operate on snapshots of S1 from D.
First-pass filters correlate counters in S with the class
attribute B to produce S1. Second-pass filters correlate
counters from S1 with the class attribute H, which
represents the set of healthy/unhealthy indices. The purpose
of the first-pass filter is to provide a cleaner set of data to
the second-pass. First-pass filters do not take into
consideration the interaction between different counters in
S. The key goals of second-pass filters are to produce the
set S2 to predict H indices and various counter thresholds
that define the health model. Thresholds of different
counters in S2 are embedded in the regression equations
involving the different counters. PerfAnalyzer uses
different regression algorithms based on data-
categorization. The algorithms used are summarized in
Figure 6.

 For any snapshot of S2 in R (counter snapshots
recorded post-deployment), PerfAnalyzer can automatically
determine the application health index i (with confidence
d), iЄH|u. Like the first-pass filters, each second-pass filter
has a fixed cut-off value to discard counters. From our
experiments, we found that fregression = 0.5 was a good cut-
off value for OLR and MLR filters. The application is then
deployed with the mined health model. The health model
monitors only counters from S2 at the application
production environment to automatically compute the
health index in real-time. Based on the estimated health
index, predictions can be made on the general application
health. For example, if the health deteriorates continuously
within a certain time period, say ω, alarm should be raised.
In the production environment, snapshots are taken every Δ
seconds, but only the last ω snapshots are stored. The
snapshots of S2 recorded during the last ω time periods will
provide useful hints for analyzing the root cause of failure

or health deterioration, if any. If moving average is
computed every m time periods, then it is sufficient to store
the last ω/m values for each counters in S2. Hence the
health model incurs a constant memory complexity of
C(|S2| × ω/m), where C is some implementation dependent
constant.

IV. IMPLEMENTATION AND EVALUATION

We have implemented PerfAnalyzer in C#, on Microsoft
CLR platform. The monitoring agent was developed
internally at Microsoft. PerfAnalyzer employs SQL Server
2005 to store and process the counter data-set. SQL
Server’s business intelligence and data mining algorithms
were used programmatically in C# for accessing ML-based
first-pass and second-pass LR filters. A screenshot of
PerfAnalyzer is shown in Figure 7. Various configurable
parameters such as data-categorization and filter cut-offs
can be specified as menu options. PerfAnalyzer outputs S1,
S2, and a health model. We have applied PerfAnalyzer on
five simple stress scenarios – CPU, Memory, Disk, I/O, and
network; and two real applications – SQL Server 2005
Enterprise edition and IIS Web Server 7.0. We next
describe our evaluation criteria, validation approach, and
results from seven case studies.

Evaluation Criteria: To evaluate PerfAnalyzer and the
health model it mines, we used the following three
qualitative and quantitative criteria. (1) How good are the
counters in S1? An expert inspected the counters selected in
S1 and the discarded counters in (S – S1). Are there any
obvious counters missing (false negatives) in S1? Are there
any counters that are not expected to be there in S1? (false
positives) (2) How good are the counters in S2? An expert
inspected the counters in S2 and S2 – S1. For the simple
scenarios - CPU, memory, disk, I/O, and network, to some
extent, we could manually predict the counters in S1 and
S2, and hence qualitatively evaluate the results from
PerfAnalyzer. This was the primary reason why we chose
five simple scenarios among our evaluation subjects. For
example, for our CPU experiments, the
ProcessorTotal%UserTime and
ProcessorTotal%ProcessorTime counters were in S1 and
S2 with highest confidence (d), as expected. (3) How
much reduction is achieved in the counter size by using
PerfAnalyzer? How well does the health model predict

health indices, post-deployment using counters in S2? Our
quantitative validation approach is explained next.

Figure 7: A screenshot of PerfAnalyzer

Validation: How well can the health model predict the
health indices, post-deployment? To test this, we choose a
random subset V (test data-set) from D (counter data-set).
Each indexed-snapshot (Sj, bj, ij) in D with bj = !b for all j
in [0, (k-1)] is chosen to be in V with some user-
determined probability q. Each (Sj, bj, ij) chosen from D to
be in V is stripped of its indices. Also, all counters in (S –
S2) are discarded. In other words, each non-baseline
snapshot in D is chosen to be in V with some probability q.
Only S2 counters are retained in V. In fact, V roughly
represents R, the counter snapshots of S2 recorded during
application run-time, post-deployment. The validation
module takes V as input and predicts the health index for
each S2 snapshot in V, using the mined health model.

Figure 6: Second-pass filter algorithms

The inferred health index is compared with the
corresponding actual health index available in D to
determine the prediction accuracy. PerfAnalyzer excludes
the test data-set V when building the health model. The
health model is inferred from snapshots in (D – V). With
the evaluation criteria and validation approach in place, we
next describe our experience of using PerfAnalyzer on
seven different subjects. For each subject, baseline
experiments were done for about 2 hours. Experiments at
each stress level (healthy and unhealthy) were performed
for about 30 minutes. The monitoring agent, implemented
as agent.exe on the monitoring machine collected counter
snapshots from the target machine. Different stress tools
[W02], developed internally at Microsoft, were used to
apply stress to applications under test. As expected, most
per-process counters for the stress tool process and
agent.exe were picked.

CPU Stress: A CPU stressor [W02], StressTool.exe, was
run on the dual-core target machine to vary CPU stress
from 0 - 90%. Among other counters, per-process counters
were monitored for StressTool.exe and agent.exe. A
snapshot collected during CPU stress level of a% is
assigned a lower rank (lower rank values indicate better
health. For example, rank 2 is healthier than rank 6) than
the snapshot collected during CPU stress level of b% iff a
< b. For the baseline case, StressTool.exe was just running
idle applying no stress. Any CPU stress above 80% was
considered unhealthy. ProcessorTotal%ProcessorTime and
ProcessorTotal%UserTime counters were in S1 with
highest confidence (0.91 and 0.87 respectively), as
expected. Most per-process counters for agent.exe and
StressTool.exe also appeared in S1 and S2. Many .NET
counters were picked to our surprise. On closer inspection
we realized that the stress tool used was written using
managed C++ explaining the .NET counters.

Memory Stress: Consume.exe [W02] was run on the target
machine to vary memory consumption 0 – 70%. Per-

process counters were monitored for Consume.exe and
agent.exe. For baseline, Consume.exe remained idle. Any
memory consumption above 60% was considered
unhealthy. Memory counters for Consume.exe --
VirtualBytesPeak, VirtualBytes, WorkingSetPeak,
pageFileBytesPeak, PageFileBytes, and PrivateBytes, all
appeared at the top of S1 (confidence of 1.0) and S2 as
expected.

Disk Stress: A disk stressor [W02] was used to write
varying amounts of data to the disk. At unhealthy levels,
the disk writes filled 99.95% of the total disk space. The
counters in S1 and S2 were as expected with very few false
positives and negatives.

I/O Stress: sqlio.exe [W02] was used to simulate different
I/O patterns. The I/O patterns were specified using batch
files and the rank-ordering of different stress levels were
not obvious. Hence, tag-unordered data-categorization was
used to index counter snapshots.

Network Stress: A disk stressor [W02] was adapted to
write different amounts of data over the network with
varying intervals. An idle network was used for baseline.
To our surprise, PerfAnalyzer picked up redirector
performance counters, which was not expected. But the
network stress tool wrote over the network using a mapped
network share and the Server Message Block (SMB)
protocol, which is why the re-director performance
counters were picked up.

SQL Server 2005: StressSQL.exe [W02] was used to stress
SQL Server 2005. Per-process counters for various SQL
Server processes such as Sqlservr.exe and msmdsrv.exe
were monitored. A dummy database was created and a
dummy set of queries were created to query the database.
StressSQL.exe allows us to configure the number of users,
user think-time, number of queries/user, etc. Various
experiments were performed and rank-ordering was used

for data-categorization. The counters picked by
PerfAnalyzer were a very good match for the expected SQL
Server counters (expert specified [W01]).

IIS Web Server 7.0: Web application stress test tool,
was.exe [W02], was used to stress an IIS 7.0 installation.
Outside requests to a .aspx file were made using was.exe.
Number of users, random delays, requests/user, etc. can be
specified to the stress tool and different experiments were
conducted at baseline, healthy, and unhealthy levels. We
expected ASP.NET counters to be picked, but no counters
were picked to our surprise. On closer inspection, we
realized that the IIS Server served requests out of its cache
for simple ASP pages. Many such interesting observations
can be made by observing performance counters in S1 and
S2.

k >10, 000 fentropy 0.1
|S| ~1000 fIGSU 0.2
Δ 10s 2nd pass OLR/MLR

regression
m 50 fregression 0.5
1st pass Entropy + IGSU |V| / |D| 0.2

Figure 8: Experimental settings

Our quantitative evaluation results are displayed in
Figure 9. We evaluated many combinations of first-pass
and second-pass filters. For each combination, we evaluate
various choices of data-categorization. However, in the
interest of space, we only display the results for settings
displayed in Figure 8. All data-sets except I/O were rank-
ordered. I/O data-set was tag-unordered. For each subject,
we started with |S|~1000 counters. On an average over
seven subjects, the size of S2 reduced by about 91%
compared to size of S (after second pass). There was a 78%
size reduction observed between S and S1 (after first pass),
on an average. For validation, we randomly selected about
20% (|V|/|D|) of S2 snapshots in D as test data-set. We had
a prediction accuracy of over 98% for all the applications
as shown in Figure 9.

Figure 9: Validation results. |S|~1000

V. RELATED WORK

Various performance testing guidelines [W01], based

on performance counters, exist for applications such as web
servers and database servers. Our approach attempts to
mine these expert guidelines from performance counter
data-set. Our work is most similar to Cohen et al.’s
approaches [CZG05] and [CGK05]. The first approach
[CZG05] analyzes system-level metrics to deduce the
system state and determine if the state is similar to a
previous faulty state. The second approach [CGK05]
analyzes instrumentation data from network services in
order to forecast and diagnose failure conditions. Apart
from performance slowdowns, security and robustness
violations are also threats to reliable and dependable
computing. Various mining approaches exist to uncover
security and robustness bugs from software. These
approaches either mine application source code [RGJ07] or
run-time [YEBBD06] information such as execution traces.
These approaches employ sequence mining techniques
[AS95, GZ05] to infer bugs. PerfAnalyzer monitors
application performance for slowdowns, which are also a
major threat to reliable and dependable services.
PerfAnalyzer is also a mining approach, which mines
health model by monitoring performance counters during
application run-time. PerfAnalyzer employs various
correlation and regression algorithms [CCWA03, H98, S05,
W03] to mine the health model from the counter data-set.
Many approaches exist for software failure diagnosis
[TLHXZ07] such as offline diagnosis [ZGZ03], dynamic
software bug detection [HJ92], check-pointing/re-execution
[OSSN02], and distributed systems fault localization.
[HJ93] outlines a methodology to collect performance data
for performance bottleneck analysis in large-scale parallel
systems. In contrast, PerfAnalyzer adopts a generic view of
all kinds of failures, including software failures, by
analyzing performance counters.

VI. CONCLUSIONS

We observed that the first pass gets rid of ~80% of
redundant or irrelevant counters without throwing away
good predictors. PerfAnalyzer has a negligible false
negative percentage. However, even after evaluating
various first pass algorithms and heuristics, S1 counters
after first-pass had false positives – some unrelated
counters were present in S1. Second-pass algorithms are
very sensitive to false positives in S1. The health model
improved when obvious false positives were manually
removed from S1. Manually removing counters was
possible to some extent for the five simple scenarios we

considered. We intend to invest our future efforts in
exploring better first-pass heuristics to reduce human
intervention. Also, extensive experiments are required to
determine optimum values for m, ω, Δ, k, and f values for
various first and second-pass filters. Counter snapshots
were collected from a single target machine. To generalize
this approach to multiple machines, the monitoring
framework has to be extended to incorporate roles and
aggregation. Roles identify the role of a machine in a huge
infrastructure. For example, in a data-center, a set of
machines will be dedicated for indexing only. It makes
more sense to report related counters among different
machines with same roles in an aggregated (for example,
average value) fashion. Finally, it will be interesting to
explore event-based health models (events refer to
application run-time events), as a complementary approach
to counter-based health models explored in this paper.

ACKNOWLEDGMENT

We thank Hunter Hudson and the members of his
Engineering Services team at Microsoft Center for
Software Excellence for providing us with the resources
needed to implement PerfAnalyzer and conduct
experiments. The monitoring agent was developed by the
Engineering Services team. We thank Christopher Marsh,
Matt Pietrek, Craig Schertz, Jack Shu, and Dick Wilbur for
various discussions and help with the monitoring agent and
related experiments. The stress tools employed in our
experiments were developed by several teams [W02] within
Microsoft and we acknowledge their use here. Finally, we
thank SQL Server Data Mining team members at Microsoft
for valuable inputs and discussions on using business
intelligence and data mining capabilities of SQL Server.

REFERENCES

[A02] A. Agresti, “Categorical data analysis”, Wiley Interscience, 2002
[AS95] R. Agrawal, R. Srikant, “Mining sequential patterns”, ICDE 1995
[B07] C. Bishop, “Pattern recognition and machine learning”, Springer,
2007
[CCWA03] J. Cohen, P. Cohen, S. West, L. Aiken, “Applied multiple
regression/correlation analysis for the behaviorial sciences”, LEA Inc.,
2003
[CGK05] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J. Chase,
“Correlating instrumentation data to system states: A building block for
automated diagnosis and control”, OSDI 2004
[CKFFB02] M. Chen, E. Kiciman, E. Fratkin, A. Fox, E. Brewer,
“Pinpoint: Problem determination in large dynamic systems”, DSN 2002
[CZG05] I. Cohen, S. Zhang, M. Goldszmidt, J. Symons, T.
Kelly, A. Fox, “Capturing, indexing, clustering, and retrieving system
history”, SOSP 2005
[GZ05] G. Grahne, J. Zhu, “Fast algorithms for frequent itemset mining
using FP-trees”, IEEE TKDE 2005
[H98] M. Hall, “Correlation-based feature selection for discrete and
numeric class machine learning”, ICML 2000
[HJ92] R. Hastings, B. Joyce, “Purify: Fast detection of memory leaks and
errors”, USENIX 1992

[HM93] J. Hollingsworth, B. Miller, Dynamic control of performance
monitoring on large scale parallel systems, SIGARCH SC 1993
[OSSN02] S. Osman, D. Subhraveti, G. Su, J. Nieh, “The design and
implementation of Zap: A system for migrating computing environments”,
OSDI 2002
[RGJ07] M. Ramanathan, A. Grama, S. Jagannathan, “Static specification
inference using predicate mining”, PLDI 2007
[TLHXZ07] J. Tucek, S. Lu, C. Huang, S. Xanthos, Y. Zhou. “Triage:
Diagnosing production run failures at the user's site”, SOSP 2007
[W01] MSDN Library, http://msdn.microsoft.com
[W02] Microsoft Toolbox, Microsoft Intranet Resource
[YEBBD06] J. Yang, D. Evans, D. Bharadwaj, T. Bhat, M. Das,
“Perracotta: Mining temporal API rules from imperfect traces”, ICSE 2006
[ZGZ03] X. Zhang, R. Gupta, Y. Zhang, “Precise dynamic slicing
algorithms”, ICSE 2003

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

